文章编号: 0258-7025(2008)08-1144-05

大功率 InGaAsP/GaAs 量子阱半导体激光器的 直流和 1/f 噪声性质

张 爽1 郭树旭1 郜峰利1 郭 成2 曹军胜1 于思瑶1

(¹ 吉林大学电子科学与工程学院集成光电子学国家重点联合实验室,吉林 长春 130012 ² 吉林大学物理科学学院,吉林 长春 130026

摘要 对大功率 InGaAsP/GaAs 量子阱(QW)半导体激光器(LD)的直流(DC)特性和小注入下的低频噪声(LFN) 特性进行了实验研究。DC 检测发现,V-I和IdV/dI-I可以对 LD 的电流泄漏作出判断。LFN 检测发现,小注入下 的 1/f 低频电压噪声幅值 $B_V(I) \propto I^{\beta_V}$ 。理论分析和老化实验均表明,电流指数 β_V 与载流子输运和电流泄漏机制之 间有很好的相关性,存在电流泄漏和无辐射复合的器件其 $|\beta_V|$ 较小,可靠性较差。

关键词 激光器;半导体激光器;可靠性;1/f噪声;直流特性;电流泄漏

中图分类号 TN 248.4 文献标识码 A doi: 10.3788/CJL20083508.1144

Direct Current and 1/f Noise Characteristics of InGaAsP/GaAs High Power Quantum Well Laser Diodes

Zhang Shuang¹ Guo Shuxu¹ Gao Fengli Guo Xin² Cao Junsheng¹ Yu Siyao¹

¹State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China ²College of Physical Science, Jilin University, Changchun, Jilin 130026, China

Abstract The direct current (DC) and 1/f noise property at low bias current and low frequency were investigated on the high power InGaAsP/GaAs quantum well (QW) laser diodes. By using DC test, we found that V-I and IdV/dI-I are indicators of current leakage. By using low frequency noise (LFN) test, we found that voltage noise amplitude $B_V \propto I^{\beta_V}$. Theoretical analysis and aging tests indicate that current index β_V is correlated with the carrier transport and current leakage mechanisms. The small $|\beta_V|$ indicates that the lasers are unreliability devices with serious current leakage and non-radiative recombination.

Key words lasers; semiconductor lasers; reliability; 1/f noise; direct current characteristics; current leakage

1 引 言

大功率半导体激光器(LD)广泛应用于工业、医 疗、军事和通信等领域,它的工作电流大、电流密度 高、功率损耗大,且价格昂贵,所以对其可靠性的研 究显得尤为重要。传统的电老化方法虽然有效,但 对器件会造成一定损伤,且大批量老化受到大功率 驱动电源这一瓶颈的限制^[1]。V-I 检测是一种常用 的无损检测方法,但它所能提供的信息是有限的,而 电导数 IdV/dI-I 检测方法对 V-I 特性敏感且可对 电流泄漏作出表征,目前已得到广泛而深入的研 究^[2~7]。噪声检测方法因其对器件失效机制更敏感, 目前正成为半导体器件可靠性评价的研究热 点^[8~12]。以往的文献大多倾向于单纯的直流^[2~7]或 噪声^[8] 规律的研究,虽有一些文献对 V-I 与噪声之

基金项目:国家自然科学基金(60471009)和吉林省重大科技发展计划(200403001-4)资助项目。

作者简介:张 爽(1967—),男,辽宁人,副教授,目前主要从事半导体激光器可靠性方面的研究。

E-mail:zhangshuang@jlu.edu.cn

导师简介:郭树旭(1959—),男,甘肃人,教授,博士生导师,目前主要从事弱信号检测和图像处理等方面的研究。 E-mail:guosx@mail.jlu.edu.cn

收稿日期:2007-09-29; 收到修改稿日期:2008-01-10

间的关系作了相关报道^[9~11],而关于 IdV/dI-I 与噪 声之间关系的文献甚少^[12]。针对直流与噪声特性相 关性的研究对深刻认识 LD 直流和噪声的本质,以 便更好地利用两种无损检测方法全面、准确地进行 可靠性评价意义重大;同时,对低噪声器件的研制也 有积极意义^[13,14]。本文对电导数和噪声特性进行了 对比研究,发现两者之间具有很好的相关性。

通过 DC(V-I 和 I dV/dI-I) 检测发现,根据直流 性质的差异可将器件分成两类:一类存在较大的泄漏电流(典型器件 62[#]),另一类存在很小的泄漏电 流(典型器件 59[#])。对这两类大功率 InGaAsP/ GaAs QW LD 的 LFN 在小注入下(1 mA左右)进 行了测量,测量结果显示 $B_V(I) \propto I^{A_V}$,且存在电流 泄漏的器件,其 1/f 电压噪声的幅值随电流减小得 较慢,即 $|_{\beta_V}|$ 较小的器件其潜在的无辐射复合和电 流泄漏较严重。进一步的恒流老化实验证实, $|_{\beta_V}|$ 小的器件其寿命相对较短。

2 结果与分析

2.1 直流特性测量

V-I, IdV/dI-I 和 P-I 测量系统由微机(PC), PCI-NI6014 数据采集卡, 光电转换, 放大电路和驱动电源组成, 通过基于 Measurement Studio 的 VC ++. Net 编程完成自动测量和参数提取, 测试系统 如图 1 所示。

两只典型大功率 ($P_{max} = 2$ W)InGaAsP/GaAs 量子阱半导体激光器(62^{*} ,59^{*})的 V-I 测量结果如 图 2 所示。由图 2 可见 62^{*} 与 59^{*}的 V-I 特性明显不 同,即 62^{*} 的电压饱和特性较差,微分电阻较小。为 进一步定量给出两只器件 V-I 特性的差异,PC 机由 实测 V-I 数据得到的 62^{*} 和 59^{*}的 IdV/dI-I 和 P-I 曲线如图 3 和图 4 所示,其中光功率没有定标,但可 以表示相对大小关系。

由图 3 和图 4 可见,62[#] 的阈值电流较大 (I_{th} = 385.2 mA),外量子效率较低,实测理想因子较大 (m = 1.58),等效串联电阻较小 (阈值前 $R_{s1} = 0.17 \Omega$,阈值后 $R_{s2} = 0.18 \Omega$)。实验结果与文献[2]

图 2 实测 62[#] 和 59[#] 的 V-I 曲线

Fig. 2 Measured V-I curves of samples 62[#] and 59[#]

图 3 实测 62[#]的 IdV/dI-I 和 P-I 曲线

Fig. 3 Measured IdV/dI-I and P-I curves of sample 62#

图 4 实测 59[#] 的 IdV/dI-I 和 P-I 曲线

Fig. 4 Measured *IdV/dI-I* and *P-I* curves of sample 59^{*} 报道的电流泄漏导致阈值电流增大,外量子效率降低,实测理想因子变大^[2]的结论吻合,而阈值后截距 *b* 没有太大的差别^[3],并联泄漏电阻的存在必然导 致等效串联电阻的减小。因此推测 62^{*}存在较大的 电流泄漏,泄漏的另一个特征是图中箭头所指的拐 点位置明显右移和上移,实验发现 *V-I* 饱和特性差 的器件其 *IdV/dI* 均有该特征,这一特征会导致实 测理想因子(即非本征理想因子^[4])变大。

2.2 噪声特性测量

为进一步研究电流泄漏的微观机制,对器件的低频(1.25 Hz~1 kHz)电压噪声 Sv 在毫安附近进

行了测量,测量系统如图 5 所示。样品和低噪声前 置放大器均采用电池供电以减小噪声干扰,前置放 大器为 EG&G PARC 5184,频谱仪为 ADVANTEST R9211C。

图 5 噪声测量系统 Fig.5 Noise measurement system 理论上电压噪声功率谱密度可表示为

$$S_V = A + \frac{B_V}{f^{\gamma}} + \frac{C}{1 + (f/f_0)^2},$$
 (1)

式中 A 为白噪声幅值, B_V 为 $1/f^{\gamma}$ 噪声幅值, $C \approx f_0$ 分别为 g-r 噪声的幅值和特征频率, 各噪声分量可 反映不同的微观机制。根据(1) 式可将 $1/f^{\gamma}$ 噪声的 幅值 B_V 和频率指数 γ 提取出来, 典型器件 62^{*} 和 59^{*}的 B_V -I 曲线如图 6(a), (b) 所示。测量结果显示 $B_V 与 I 呈指数规律变化(B_V \propto I^{\beta_V})$, 其中 β_V 为电压 噪声的电流指数。实测 62^{*} 的 $\beta_V = -0.75$, 而 59^{*} 的 $\beta_V = -3.38$, 即 62^{*} 的 1/f 电压噪声幅值随电流 的降落较 59^{*} 缓慢得多。图中 γ 值为不同电流下测 得的平均值, γ 值显示这两只激光器的电压噪声均 呈现近似纯 1/f 噪声性质。

上述实验结果与文献[8,9]中小注入下 S_v ∝

图 6 1/f 噪声随偏置电流的变化

 $I^{-1}(\beta_v = -1)$ 的实验结果不符。根据电压噪声与电流噪声的关系

$$S_V = \left(\frac{\mathrm{d}V}{\mathrm{d}I}\right)^2 S_I, \qquad (2)$$

若考虑该电流测量范围内满足 $R_s \ll mkT/qI \ll R_p$, 其中 R_s 为半导体激光器的等效串联电阻, R_p 为等 效并联泄漏电阻, mkT/qI 为 p-n 结的非线性电阻, 故有 dV/dI = mkT/qI, $(dV/dI)^2 \propto I^{-2}$ 。根据噪声 理论, 对于扩散 1/f 噪声满足 $S_I \propto I^1$, 对于复合 1/f噪声 $S_I \propto I^2$ 。因此对于复合 1/f 噪声应有 S_V 随 I 变 化较弱 $(S_V \propto I^0)$, 而对于扩散 1/f 噪声应有 S_V 随 I变化较强 $(S_V \propto I^{-1})$ 。文献 [8,9] 的结果与小注入下 为扩散 1/f 噪声的 $S_V \propto I^{-1}$ 的理论分析一致。关于 大功率 InGaAsP/GaAs 量子阱半导体激光器的实 验结果显示, 不同器件的 β_V 在一4.5~0.3宽范围 内变化,这与上述理论分析有较大出入, 对于这一问 题本文做如下解释。

根据(2)式, S_V 的测量结果与电流噪声 S_I 和微 分电阻 dV/dI 有关。其中 $(dV/dI)^2$ 项对 S_V 的影响 较大。通常的分析是将 p-n 结的非线性电阻近似看 成 $mkT/qI^{[8,9]}$,即 $(dV/dI)^2 \propto I^{-2}$,实际上不同器件 满足这一关系的电流区间是不同的。如图 3 和图 4 所示的电导数 IdV/dI-I 曲线,只有在箭头所指的拐 点的右侧才满足 dV/dI = mkT/qI 这一关系,而此 时的电流将达到十几或几十毫安以上,根据文献[4] 的观点,大功率器件可以看成小功率器件的并联结 构,而这一并联结构必然导致在更大的电流下才满 足 dV/dI = mkT/qI 这一近似关系。测量的电流范 围是在毫安量级以下,即图 3 和图 4 箭头所示位置 的左侧,此时 p-n 结的微分电阻 R_{pn} 可由 $dV_1/dI_1(V_1 和 I_1 分别为 p-n 结两端电压和流经的$ 电流)求得

$$I_1 = I_s \left[\exp\left(\frac{qV_1}{mkT}\right) - 1 \right], \qquad (3)$$

如果考虑并联线性泄漏电阻 R_p,则器件总的微分电阻应为

$$\frac{\mathrm{d}V}{\mathrm{d}I} = \left[(R_{\rm p-n} + R_{\rm s})^{-1} + R_{\rm p}^{-1} \right]^{-1}, \qquad (4)$$

满足(3)和(4)式,且考虑小注入(毫安以下)和 R_p 的影响时,dV/dI = mkT/qI这一近似关系不成立。 由(3)和(4)式容易得到在小注入和考虑 R_p 的影响时dV/dI随I的降落比 I^{-1} 快,图3和图4箭头所指位置左侧的IdV/dI-I曲线随I呈降落趋势也证实了这一点。对比图3和图4发现,图3的IdV/dI-I 较图 4 降落慢,这根据(4)式可解释为 62^{*} 的 R_p 较小,即 线性泄漏较严重。根据(4)式, R_p 对 dV/dI 的影响是 相当大的,进一步会对 S_V 的测量结果产生较大影 响,这一问题是导致 β_V 在较大范围内变化的主要原 因之一。根据分析,小注入时 dV/dI 随 I 的降落远比 I^{-1} 快(尤其在 R_p 大的情况),即(dV/dI)² 随 I 的降 落远比 I^{-2} 快,对于扩散 1/f 噪声满足 $S_I \propto I$,故 S_V 随 I 降落较快;反之,若 R_p 小,则 dV/dI 随 I 降落減 缓,又对于复合 1/f 噪声 $S_I \propto I^2$,故 S_V 随 I 降落较 慢。

为了进一步验证 62^{*} 和 59^{*} 的可靠性,对这两 只器件进行恒流老化实验,老化时间共600 h(每天老化10 h), $0\sim100 h$,老化电流 $I = 600 mA;100\sim$ 200 h, $I = 700 mA;200\sim300 h$, $I = 800 mA;300\sim600 h$, $I = 900 mA_{\circ}$ 老化600 h后的 IdV/dI-I 和 P-I 曲线如图 7 和图 8 所示。

图 7 老化 600 h 后 62[#] 的 IdV/dI-I 和 P-I 曲线 Fig. 7 IdV/dI-I and P-I curves of sample 62[#] after aging 600 h

图 8 老化 600 h 后 59[#] 的 IdV/dI-I 和 P-I 曲线 Fig. 8 IdV/dI-I and P-I curves of sample 59[#] after aging 600 h

由图 7 和图 8 可见,62*较 59*可靠性降级速度 快,表现在 IdV/dI-I 曲线起伏较大^[5],光功率产生 明显折扭。按照分析,由于 62*存在较多的由于缺陷 形成的非辐射复合中心,或是存在较严重的电流泄 漏,从而对器件寿命产生一定影响。为进一步验证 $|\beta_V|$ 与器件可靠性之间的关系,本文对 62^* 和 59^* 电压噪声的电流指数 β_V 的老化规律进行了统计分 析,如表 1 所示。

表 1 1/f 电压噪声的电流指数随老化时间的变化 Table 1 Current index of 1/f voltage noise versus aging time

Aging time /h -	Current index (β_V)	
	59#	62#
0	-3.38	-0.75
100	-3.43	-0.66
200	-3.39	-0.61
300	-2.51	-0.62
400	-1.91	-0.66
500	-2.00	-0.59
600	-1.81	-0.62

由表 1 可见,62[#]和 59[#]的电流指数 β_v 的绝对 值 $|\beta_v|$ 随老化时间的增加呈减小趋势,根据理论分 析,是由于电流泄漏或无辐射复合的加剧导致的。另 外,对于正常使用中逐渐老化的器件也观察到上述 规律,例如 NL1W40 在使用前 $\beta_v = -2.31$,经使用 半年后 $\beta_v = -0.84$ 。因此, $|\beta_v|$ 小的器件应存在较 严重的无辐射复合或电流泄漏,可靠性较差。

3 结 论

通过对大功率 InGaAsP/GaAs 量子阱半导体 激光器的直流特性和小注入下低频 1/*f* 电噪声特性 的综合研究,揭示了 DC(*V*-*I* 和 *I*dV/d*I*-*I*) 检测和 1/*f* 噪声检测(β_V 检测)反映电流泄漏的共同物理基 础。理论和实验表明,存在无辐射复合和电流泄漏的 器件其 1/*f* 电压噪声幅值随电流降落较慢($|\beta_V|$ 较 小),反之则 1/*f* 电压噪声幅值降落较快($|\beta_V|$ 较 大)。 $|\beta_V|$ 小的器件缺陷密度较大、无辐射复合电流 较大、电流泄漏较大,因此可靠性差。虽然这一检测 方法的实际应用仍需通过大量老化实验来验证,但 在可靠性理论研究方面还是可以提供很好的参考和 借鉴。

参考文献

 Gao Songxin, Wu Deyong, Wei Bin et al.. Reliability of high power diode laser stack [J]. Chinese J. Lasers, 2006, 33 (Suppl.):6~9

高松信,武德勇,魏 彬等.高功率二极管激光器阵列可靠性 研究[J].中国激光,2006,**33**(增刊):6~9

- 2 P. D. Wright, W. B. Joyce, D. C. Craft. Electrical derivative characteristics of InGaAsP buried heterostructure lasers [J]. J. Appl. Phys., 1982, 53(3):1364~1372
- 3 M. M. Choy, C. E. Barnes. Effective screen for fast aging InGaAsP BH lasers using electrical derivatives [J]. *Electron*.

光

中

35 卷

Lett., 1985, **21**(19):846~848

4 Zhang Shuang, Guo Shuxu, Guo Xin et al.. Extrinsic ideality factor of laser array [J]. Chinese Journal of Semiconductors, 2007, 28(5):768~773
张 爽,郭树旭,郭 欣等.激光器阵列的非本征理想因子[J].

半导体学报,2007,**28**(5):768~773

- 5 Qi Liyun, Shi Jiawei, Li Hongyan *et al.*. The peak in the electric derivative curves and optic derivative curves of GaAs/ GaAlAs high-power QW lasers [J]. *Microelectron. Reliab.*, 2000, **40**:2123~2128
- 6 Li Hongyan, Shi Jiawei, Jin Enshun *et al.*. An application of the electrical derivative measurement in rapid screening of highpower semiconductor lasers [J]. *Chinese J. Lasers*, 1999, A26 (6):507~510

李红岩,石家纬,金恩顺等. 电导数测试用于大功率半导体激 光器的快速筛选[J]. 中国激光,1999, **A26**(6):507~510

- 7 Lin Hu, Guo Shuxu, Zhao Wei *et al.*. Wavelet transform for evaluation of semiconductor laser reliability [J]. *Chinese J. Lasers*, 2004, **31**(9):1050~1054
 林 虎,郭树旭,赵 蔚等.小波变换用于半导体激光器可靠 性分析[J]. 中国激光, 2004, **31**(9):1050~1054
- Bao Junlin, Zhuang Yiqi, Du Lei *et al.*. A unified model for 1/*f* noise in n-channel and p-channel MOSFETs [J]. *Acta Physica Sinica*, 2005, **54**(5):2118~2122
 包军林,庄奕琪,杜 磊等. n/p 沟道 MOSFET 1/*f* 噪声的统一模型[J]. 物理学报, 2005, **54**(5):2118~2122
- 9 Hu Jin, Du Lei, Zhuang Yiqi et al.. Noise as a representation

for reliability of light emitting diode [J]. Acta Physica Sinica, 2006, **55**(3):1384~1389

胡 瑾,杜 磊,庄奕琪等.发光二极管可靠性的噪声表征[J]. 物理学报,2006,**55**(3):1384~1389

- 10 X. Y. Chen, A. Pedersen, O. G. Helles *et al.*. Electrical noise of laser diodes measured over a wide range of bias currents [J]. *Microelectron. Reliab.*, 2000, **40**:1925~1928
- 11 R. Crook, B. K. Jones. Noise and DC characteristics of power silicon diodes [J]. Microelectron. Reliab., 1997, 37(10/11): 1635~1638
- 12 Hu Guijun, Shi Jiawei, Zhang Shumei et al.. The correlation between the low-frequency electrical noise of high-power quantum well lasers and devices surface non-radiative current [J]. Microelectron. Reliab., 2002, 42:153~156
- Lü Yanfei, Tan Huiming, Qian Longsheng. Laser diode array pumped Nd: YAG dual wavelength laser with intracavity sumfrequency mixing at 589 nm [J]. *Chinese J. Lasers*, 2006, 33 (4):438~442
 吕彦飞,檀慧明,钱龙生.激光二极管阵列抽运 Nd: YAG 腔内 双波长运转589 nm 和频激光器[J]. 中国激光, 2006, 33(4): 438~442
- 14 Yu Benli, Zhen Shenglai, Zhu Jun *et al.*. Experimental study on low-noise fiber laser [J]. *Acta Optica Sinica*, 2006, 26(2): 217~220
 命本立,甄胜来,朱 军等, 低噪声光纤激光器的实验研究[J].

前本立,甄胜米,禾 车 寺. 低噪声光纤激光溢的头验研究LJ 光学学报, 2006, **26**(2):217~220

《中国激光》"激光加工"专题征稿启事

激光加工技术是国家重点支持和推动的一项高新技术,近年来在涉及国家安全、国防建设、高新技术产 业化和科技前沿等领域已取得多项重大研究成果。《中国激光》计划于 2008 年 11 月正刊上推出"激光加工" 专题栏目,现特向国内外广大专家学者征集"激光加工"方面原创性的研究论文和综述,旨在集中反映该领域 最新的研究成果及研究进展。

征稿范围包括:

- 激光强化与材料制备
- 激光直接制造与微纳加工
- 激光器与激光加工系统
- 激光冲击与强化
- 激光焊接与切割
- 激光烧结与沉积
- 激光新应用与过程模拟
- 其他

截稿日期:2008年9月15日

投稿方式以及格式:可直接将稿件电子版发至邮箱:mayi@siom.ac.cn(主题标明"激光加工"投稿),详 情请参见中国光学期刊网:www.opticsjournal.net。本专题投稿文体不限,中英文皆可,其电子版请使用 MS-word 格式,有任何问题请发邮件至 mayi@siom.ac.cn 询问。

《中国激光》编辑部